
Supporting Privacy Protection In Personalized
Web Searching and Browsing

Manali Wadnerkar

 Department of Computer Engineering, University of Mumbai
Bharati Vidyapeeth College of Engineering, Sector-7, Belpada, Navi Mumbai, India

Dr. D.R.Ingle

 Department of Computer Engineering, University of Mumbai
Bharati Vidyapeeth College of Engineering, Sector-7, Belpada, Navi Mumbai, India

Abstract— Personalized web search (PWS) has illustrated its
effectiveness by improving the quality of search services on the
Internet. But, evidence shows that users’ hesitation to disclose
their private information during search has become a major
barrier for PWS. Privacy protection in PWS applications can
be adopted that model user preferences as hierarchical user
profiles by studying a PWS framework called UPS that
adaptively generalizes profiles by queries while keeping in
mind user-specified privacy requirements. Program slicing
technique is used for decomposition of a program by analysing
that particular program data and control flow.

Keywords— Personalized web search, privacy, dynamic slicing,
WWW, user profile.

I. INTRODUCTION

It has become increasingly difficult for users to find
information on the World Wide Web that satisfies their
individual needs since information resources on the WWW
continue to grow. Under these circumstances, Web search
engines help users find useful information on the WWW.
However, when the same query is submitted by different
users, most search engines return the same results
regardless of who submits the query. In general, each user
has different information needs for his/her query. For
example, for the query “Java,” some users may be
interested in documents dealing with the programming
language, “Java,” while other users may want documents
related to “coffee.” Therefore, Web search results should
adapt to users with different information needs. The web
search engine has become an important doorway for people
for finding useful and necessary information. Nonetheless a
user might come across failure when these search engines
return unrelated results that do not meet their requirements.
This happens due to enormous data, users’ background and
knowledge and ambiguity of texts. Personalized Web
Search (PWS) is a search technique which aims at
providing more efficient results, according to the users’
needs. This requires user information to figure out the
actual intention behind the requested query.

There are two solutions to PWS, click-log-based
methods and profile-based-methods. The former is bias to
clicked URLs or pages in the particular user’s history and
can work only on repeated queries. In contrast to this, the
latter improves the search experience with user-interest

models [1]. These user interest models are generated from
users’ profiles. PWS has illustrated more effectiveness in
improving the quality of web data search. For this, implicit
user data has to be collected which can be collected from
query history [2], browsing history, bookmarks [1], and
click-through data [3]. This raises privacy issues due to the
lack of protection of user’s private data. This may raise
panic among the users and can also smother the publisher’s
enthusiasm for offering such services. As more and more
topics are being discussed on the web and our vocabulary
remains relatively stable, it is increasingly difficult to let the
search engine know what we want. Coping with ambiguous
queries has long been an important part in the research of
Information Retrieval, but still remains to be a challenging
task. Personalized search has recently got significant
attention to address this challenge in the web search
community, based on the premise that a user’s general
preference may help the search engine disambiguate the
true intention of a query. However, studies have shown that
users are reluctant to provide any explicit input on their
personal preference. In this paper, study shows how a
search engine can learn a user’s preference automatically
based on her past click history and how it can use the user
preference to personalize search results.

There are two solutions to PWS, click-log-based
methods and profile-based-methods. The former is bias to
clicked URLs or pages in the particular user’s history and
can work only on repeated queries. In contrast to this, the
latter improves the search experience with user-interest
models [1]. These user interest models are generated from
users’ profiles. PWS has illustrated more effectiveness in
improving the quality of web data search. For this, implicit
user data has to be collected which can be collected from
query history [2], browsing history, bookmarks [1], and
click-through data [3]. This raises privacy issues due to the
lack of protection of user’s private data. This may raise
panic among the users and can also smother the publisher’s
enthusiasm for offering such services. For protecting user
privacy in profile-based PWS, developers have to consider
two contradicting effects while performing the search
process. They have to make an attempt to improve the
search quality with the personalization utility and on the
other hand they need to hide the privacy contents existing in
the user profile for keeping the privacy risk under control

Manali Wadnerkar / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 4086-4093

www.ijcsit.com 4086

[1]. People are willing to compromise their private data if
this will help in an easy access to required information and
an efficient search quality. A significant amount of gain can
be obtained by personalizing users’ information at the cost
of a small information, a generalized profile. . Hence,
without compromising the search quality if the web user
privacy can be protected. The previous works showing
privacy preservation are not optimal. There are following
concerns with the existing methods which can be explained
as below:

 The existing methods do not perform customization of
privacy requirements. This makes some user privacy
to be insufficiently protected and some over-protected.
The sensitive topics are detected using the absolute
metric called surprisal [1]. The topics which are
sensitive and the user wants to hide them may not be
well protected. This increases the risk of losing a
sensitive data.

 The existing profile-based PWS are unable to support
runtime profiling. A user, when searches the web
engine, his profile is generalized only once. This
strategy has certain drawbacks since it uses one
profile for all the queries. A better approach can be to
make an online decision for whether to personalize
the query and at runtime what to expose in a user
profile.

 Iterative user interactions are needed when creating
personalized search outcome. Predictive metrics
unlike, average rank, are required to measure the
search quality.

 A good personalization algorithm relies on rich user
profiles and web corpus. However, as the web corpus is on
the server, re-ranking on the client side is bandwidth
intensive because it requires a large number of search
results transmitted to the client before re-ranking.
Alternatively, if the amount of information transmitted is
limited through filtering on the server side, it pins high
hope on the existence of desired information among filtered
results, which is not always the case. Therefore, most of
personalized search services online like Google
Personalized Search and Yahoo! My Web adopt the second
approach to tailor results on the server by analysing
collected personal information, e.g. personal interests, and
search histories.

 A key factor for today’s popular search engines is that
they provide a user-friendly interface. The topics which are
displayed on the web page related to a particular query are
in the form of list of keywords entered by the user in the
search bar, ranked according to their relevance with the
original query. Ranking has become a central research
problem for informational retrieval and Web data search, as
it directly influences the relevance of the search results, the
quality of a search system and users’ search experience.
Given a query, the deployed ranking function measures the
relevance of each document to the query, sorts all the
relevant documents and presents a list of top-ranked ones to
the user. Despite of the simple interaction which proved to
be successful, a list of keywords is not a good descriptor of
the required information by the users. Users can not always
formulate an efficient query to these search engines. One

reason for this is the ambiguous data which is entered by
the user. Often, users try different queries till get satisfied
with the appropriate results. If users are familiar with the
specific terminologies required, effective formulation can
be achieved. But this may not be the case always. Users
may have a little knowledge about what they are searching
or even worse they do not what they are searching at all. An
example explained in [2], a tourist is searching for summer
rentals ad in Chile may not know that most of such ads
appearing on the web are for apartments in Vina del Mar
which is a popular beach in Chile. But local users are well
aware of such facts. Hence, the idea is to use these expert
queries for helping the non-expert users. So, to overcome
this problem some search engines help the users to specify
alternative queries related to the original query in their
search process. Nonetheless, this approach has privacy
issues on exposing personal information to a public server.
It usually requires users to grant the server full access to
their personal and behaviour information on the Internet.
Without the user’s permission, gleaning such information
would violate an individual’s privacy. In practice, however,
privacy is not absolute. There exist already many examples
where people give up some privacy to gain economic
benefit. One example is frequent shopper card in grocery
stores. Consumers trade the benefit of extra saving in the
grocery stores versus the creation of a detailed profile of
their shopping behaviour. As another example, consider a
basketball fan. He may not be comfortable broadcasting a
weekly work-out schedule, but might not mind revealing an
interest on basketball if a search engine can help identify
“Rockets” as an NBA team instead of anything related to
space exploration. Thus, people may compromise some
personal information if this yields them some gain in
service quality or profitability.

 Paper is organized as section two deals with related
works, section three deals with system architecture, section
four deals with User Customizable Privacy Preserving
Search (UPS), section five deals with slicing algorithm,
section six deals with Generalization Algorithms, section
seven deals with experimental results and section eight
conclude with the results.

II. RELATED WORKS

In this section, the related works are overviewed. Focus
is on the literature of profile-based personalization and
privacy protection in PWS system.
A. Profile-based personalization

There have been several prior attempts to personalize
Web search. One approach to personalization is to have
users describe their general interests. For example, Google
Personal asks users to build a profile of themselves by
selecting categories of interests. This profile can then be
used to personalize search results by mapping Web pages to
the same categories. Many commercial information filtering
systems use this approach, and it has been explored before
to personalize Web search results. Personal profiles have
also been used in the context of the Web search to create a
personalized version of PageRank [10] for setting the
query-independent priors on Web pages. A similar
technique for mapping user queries to categories based on

Manali Wadnerkar / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 4086-4093

www.ijcsit.com 4087

the user’s search history. Information about the user’s intent
can also be collected at query time by means of techniques
such as relevance feedback or query refinement. The basic
idea of these works is to tailor the search results by
referring to, often implicitly, a user profile that reveals an
individual information goal. In the remainder of this section,
previous solutions to PWS can be reviewed the on two
aspects, namely the representation of profiles, and the
measure of the effectiveness of personalization.

Most recent works build profiles in hierarchical structures
due to their stronger descriptive ability, better scalability,
and higher access efficiency. The majority of the
hierarchical representations are constructed with existing
weighted topic hierarchy/graph, such as ODP, Wikipedia
and so on. Another work in [5] builds the hierarchical
profile automatically via term-frequency analysis on the
user data. In the proposed UPS framework, focus is not on
the implementation of the user profiles.

Actually, this framework can potentially adopt any
hierarchical representation based on a taxonomy of
knowledge. As for the performance measures of PWS in the
literature, Normalized Discounted Cumulative Gain (nDCG)
is a common measure of the effectiveness of an information
retrieval system. It is based on a human-graded relevance
scale of item-positions in the result list, and is, therefore,
known for its high cost in explicit feedback collection. To
reduce the human involvement in performance measuring,
researchers also propose other metrics of personalized web
search that rely on clicking decisions, including Average
Precision, Rank Scoring and Average Rank [3]. Average
Precision metric, proposed by Dou et al. [1], to measure the
effectiveness of the personalization in UPS. Meanwhile, our
work is distinguished from previous studies as it also
proposes two predictive metrics, namely personalization
utility and privacy risk, on a profile instance without
requesting for user feedback.

B. Privacy Protection in PWS System

Typical works in the literature of protecting user
identifications try to solve the privacy problem on different
levels, including the pseudo-identity, the group identity, no
identity, and no personal information. Solution to the first
level is proved to fragile. The third and fourth levels are
impractical due to high cost in communication and
cryptography. Therefore, the existing efforts focus on the
second level. Both [8] and [9] provide online anonymity on
user profiles by generating a group profile of k users. Using
this approach, the linkage between the query and a single
user is broken. The useless user profile (UUP) protocol is
proposed to shuffle queries among a group of users who
issue them. As a result any entity cannot profile a certain
individual. These works assume the existence of a
trustworthy third-party anonymizer, which is not readily
available over the Internet at large.

A more important property that distinguishes our work
from [10] is that we provide personalized privacy protection
in PWS. A person can specify the degree of privacy
protection for her/his sensitive values by specifying
“guarding nodes” in the taxonomy of the sensitive attribute.
Motivate by this, we allow users to customize privacy needs

in their hierarchical user profiles. Aside from the above
works, a couple of recent studies have raised an interesting
question that concerns the privacy protection in PWS. The
previous works have found that personalization may have
different effects on different queries. Queries with smaller
click-entropies, namely distinct queries, are expected to
benefit more from personalization, while those with larger
values (ambiguous ones) are not. Moreover, the latter may
even cause privacy disclosure. Therefore, the need for
personalization becomes questionable for such queries.
While these works are motivated in questioning whether to
personalize or not to, they assume the availability of
massive user query logs (on the server side) and user
feedback. In our UPS framework, we differentiate distinct
queries from ambiguous ones based on a client-side
solution using the predictive query utility metric.

C. Slicing

Two popular Anonymization techniques are
generalization and bucketization. Generalization, replaces a
value with a “less-specific but semantically consistent”
value. The main problems with generalization are:

 It fails on high-dimensional data due to the curse of
dimensionality.

 It causes too much information loss due to the
uniform-distribution assumption.

 Bucketization first partitions tuples in the table into
buckets and then separates the quasi identifiers with the
sensitive attribute by randomly permuting the sensitive
attribute values in each bucket. The anonymized data
consist of a set of buckets with permuted sensitive attribute
values. In particular, bucketization has been used for
anonymizing high-dimensional data. However, their
approach assumes a clear separation between Qis and SAs.
In addition, because the exact values of all QIs are released,
membership information is disclosed. The key idea of
slicing is to preserve correlations between highly correlated
attributes and to break correlations between uncorrelated
attributes thus achieving both better utility and better
privacy. Third, existing data analysis (e.g. query answering)
methods can be easily used on the sliced data.

III. SYSTEM ARCHITECTURE

A. Online profile
The proposed idea also suggests that the queries issued

are recommended that are related to the input query and
also search for different issues. This redirects the search
process to related information of interest to the users
searching previously and also keeping track of the related
queries issued by other users. The key component for
privacy protection is an online profiler implemented as a
search proxy that runs on client side. This proxy maintains
both the complete user profile in a hierarchical structure
with semantics, and the user-specified privacy requirements
i.e. sensitive nodes. It works in two phases, namely the
offline phase and the online phase. In the offline phase,
hierarchical profile is constructed and then customized with
the user-specified privacy requirements [1]. The online
phase can be conducted as follows:

Manali Wadnerkar / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 4086-4093

www.ijcsit.com 4088

 When query is generated the proxy generates a runtime
user profile. This process is guided by considering two
conflicting metrics, personalization utility and privacy
risk.

 Then, the query and the generalized profile are sent
together to the server.

 These results are then personalized with the profile and
delivered back to the query proxy.

 Finally, the proxy sends back the results to the client.

Fig. 1 Block diagram of UPS.

 UPS differs from the conventional PWS since it provides
runtime profiling which optimizes personalization utility,
which performs customization on the sensitive data defined
by the users, and does not require iterative user interaction.

Again, for efficient browsing, it is required to find the
ranks of the related queries and cluster them. Queries along
with the text of their clicked URLs extracted from the web
log are clustered. This is done on the basis of two notions:
 Similarity of the query. The similarity of the query to

the input query.
 Support of the query. This is a measure of how relevant

is the query in the cluster. It is measured with the
support of the query as the fraction of the documents
returned by the query that captured the attention of
users (clicked documents). It is estimated from the
query log as well.

 The quality of service can be improved when the
location of the users are closer [4]. So, if the users share
more data with each other the services provided by the web
will be accurate. The studies show that the user is biased
when it comes to searching information on the web. It can
be trusts-biased or quality-biased [3]. This shows that clicks
should be interpreted relative to the order of abstracts and
presentation. Some attempts are made to use implicit
feedback [4]. The reading time is indicative of interest
while reading new stories. The reading time as well as
number of times the user scrolls page can predict the
relevance in browsing web. But it is generally considered
that reading time varies between subjects and tasks, which
makes it difficult to interpret. This difficulty can be
resolved by the concept of eye-tracking. A general user
approaches the results from top to bottom. It appears that
users scan the viewable results before heading to scrolling.
It gives evidences about users’ decision making and
indicates that users’ clicking decisions are influenced by
relevant results.

B. Session time-out
An experiment can be conducted where the users are

observed with their clicked URL and session lengths and
then can be re-enacted. For further help, clicks can be
observed and assessment of the user’s objectives can be
done to label each session. Each query and clicked URL are
assigned with ID number. A strength of this approach is
that data is recorded without having an intervention and
additionally we can observe large amount of users. There is
a chance that the observer is biased to the user’s goals but
preliminary results show that the results achieved are
reliable. The utility of adopting a hierarchical model for the
grouping of user queries will allow us to more easily model
what type of task the user may be doing when querying.

C. Attack Model

The user profile should be protected from adversaries
which try to hamper the privacy and sensitive nodes defined
by the user by a typical attack, namely eavesdropping. As
shown in the Fig. 2 the eavesdropper intercepts successfully
the communication happening between the server and the
user by a measure, such as man-in-the-middle attack,
invading the server. Accordingly, whenever the user issues
any query q, the entire copy of q along with the runtime
profile of the user will be seized the attacker.

Fig. 2 Attack Model.

The attacker will then try to recover the hidden segments

defined as private by the user. Now, the adversary is
considered to satisfy the following assumptions:

Knowledge Bound. The background knowledge of the
adversary is limited to the entire information available on
the web. Both the original user profile and the privacy are
defined within this information.

Session Bound. Previously captured information is not
available for tracing the same victim. The eavesdropping
will be started and ended within a single session.

These assumptions are strong but are reasonable in
practice. This is considered since majority of attacks across
the web happen by some automatic programs that sends
advertisements (spam) to a wide range of users. An
approach can be made to keep this privacy risk under
control.

Manali Wadnerkar / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 4086-4093

www.ijcsit.com 4089

D. Generalizing user profile
This technique can be considered during the offline

phase processing without involving any of the user’s
queries. But however it is impractical to perform this in
offline phase because:
 This output from the offline phase may contain many

topics that are completely irrelevant to the particular
query. This can be solve if profile is generalized in the
online phase.

 It avoids unnecessary privacy disclosure to the
adversaries and also avoids noisy topics which are
irrelevant to the query.

 It is very important to monitor the personalization
factor during generalizing. But overgeneralization may
cause ambiguity.

There are four phases in [1] which are used in
generalization of the user profile. They can be explained in
the following manner:
 Offline profile construction: This is the first step of the

offline processing wherein the original user profile is
built in a topic hierarchy which reveals the interest of
the user.

 Offline privacy requirement customization: This phase
requests the user to specify sensitive nodes which the
user considers to remain hidden from the world. When
any query q is issued, this customized user profile goes
through the online phases.

 Online query topic mapping: There are two purposes
for a query q, namely to compute a profile, seed, so that
all the topics will be relevant to the query q. and to
obtain the preference values i.e. values which are
preferred to be present in the relevant topics of the
query.

 Online profile generalization: This process generalizes
the seed profile which relies on the privacy
requirements of the user.

E. Online decision

 When the profile is sent to the server the decision is
made online. Here the user can decide whether the profile
should be personalized or not. This depends on the number
of distinct or similar queries. The similar queries are
clustered together so that whenever the search is made the
similar queries can be found in one place. This improves
and enhances the search quality of the search engine.

 The profile-based personalization contributes a little and
even reduces the quality of search when there is a large
amount of distinct queries. This may expose the profile to
the server and will risk the privacy of the user. There is a
solution to this problem. The decision to personalize the
users’ profile or not can be made in the online phase. The
idea behind this phase it very simple, if a query issued is a
distinct query during generalization the complete runtime
profiling will then be aborted. Then the query will be sent
to the server without any user profile. This enhances the
stability of the quality of the search and also avoids the
unnecessary exposure of the users’ profile.

IV. USER CUSTOMIZABLE PRIVACY PRESERVING SEARCH

(UPS)

 Personalized web search is a promising way to improve
search quality by customizing search results for people with
individual information goals. However, users are
uncomfortable with exposing private preference
information to search engines. On the other hand, privacy is
not absolute, and often can be compromised if there is a
gain in service or profitability to the user. Thus, a balance
must be struck between search quality and privacy
protection. A significant improvement on search quality can
be achieved by only sharing some higher-level user profile
information, which is potentially less sensitive than detailed
personal information. Yet, there was a requirement of
balance between the privacy protection and search quality
because the information displayed by the web was not
particularly relevant.

These problems can be overcome by giving a dynamic or
runtime approach to building the user profile. This opts for
efficient browsing and searching with data protection. For
this a framework can be implemented called UPS.
Personalized web search (PWS) has demonstrated its
effectiveness in improving the quality of various search
services on the Internet but evidences show that users’
reluctance to disclose their private information during
search has become a major barrier for the wide proliferation
of PWS. UPS that can adaptively generalize profiles by
queries while respecting user specified privacy
requirements. The runtime generalization aims at striking a
balance between two predictive metrics that evaluate the
utility of personalization and the privacy risk of exposing
the generalized profile. For this, there are two greedy
algorithms, namely GreedyDP and GreedyIL, for runtime
generalization. Also, provision is made for an online
prediction mechanism for deciding whether personalizing a
query is beneficial.

Fig. 3 System architecture of UPS

 These algorithms work inside a web browser search

plug-in to provide contextual search on the client-side,
which would greatly benefit people’s daily search. Also,
balance can be achieved if web search are personalized by
considering only exposing those information related to a
specific query which can be done using these algorithms.

Manali Wadnerkar / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 4086-4093

www.ijcsit.com 4090

There are two metrics that are used to solve the
generalization problem. They can be illustrated as:

 Metric of utility: The purpose of the utility metric is to
predict the search quality (in revealing the user’s
intention) of the query q on a generalized profile G.
The reason for not measuring the search quality
directly is because search quality depends largely on
the implementation of PWS search engine, which is
hard to predict. In addition, it is too expensive to
solicit user feedback on search results. Given a
hierarchical profile G and a query q, we can
intuitively expect more discriminating power when
more specific topics are observed, the distribution is
more concentrated on a few topics, and the topics are
more similar to each other.

 Metric of Privacy: The privacy risk when exposing G
is defined as the total sensitivity contained in it, given
in normalized form. In the worst case, the original
profile is exposed, and the risk of exposing all
sensitive nodes reaches its maximum, namely 1.
However, if a sensitive node is pruned and its ancestor
nodes are retained during the generalization, the risk
of exposing the ancestors should be evaluated. This
can be done using the cost layer computed during
Offline-2. However, in some cases, the cost of a non-
leaf node might even be greater than the total risk
aggregated from its children.

UPS consists of non-trusty search engine server and a
number of clients. Each client (user) accessing the search
service trusts no one but himself/ herself. The key
component for privacy protection is an online profiler
implemented as a search proxy running on the client
machine itself. The proxy maintains both the complete user
profile, in a hierarchy of nodes with semantics, and the
user-specified (customized) privacy requirements
represented as a set of sensitive-nodes. The framework
works in two phases, namely the offline and online phase,
for each user.

V. SLICING ALGORITHM

Many algorithms like bucketization, generalization have
tried to preserve privacy however they exhibit attribute
disclosure. So to overcome this problem an algorithm called
slicing is used. This algorithm consists of three phases:
attribute partitioning, column generalization, and tuple
partitioning.
A. Attribute Partitioning

This algorithm partitions attributes so that highly
correlated attributes are in the same column. This is good
for both utility and privacy. In terms of data utility,
grouping highly correlated attributes preserves the
correlations among those attributes. In terms of privacy, the
association of uncorrelated attributes presents higher
identification risks than the association of highly correlated
attributes because the associations of uncorrelated attribute
values is much less frequent and thus more identifiable.

B. Column Generalization
Although column generalization is not a required phase,

it can be useful in several aspects. First, column
generalization may be required for identity/membership
disclosure protection. If a column value is unique in a
column (i.e., the column value appears only once in the
column), a tuple with this unique column value can only
have one matching bucket. This is not good for privacy
protection, as in the case of generalization/bucketization
where each tuple can belong to only one equivalence-
class/bucket. The main problem is that this unique column
value can be identifying. In this case, it would be useful to
apply column generalization to ensure that each column
value appears with at least some frequency. Second, when
column generalization is applied, to achieve the same level
of privacy against attribute disclosure, bucket sizes can be
smaller. While column generalization may result in
information loss, smaller bucket-sizes allow better data
utility.
Therefore, there is a trade-off between column
generalization and tuple partitioning.

C. Tuple Partitioning

The algorithm maintains two data structures: 1) a queue
of buckets Q and 2) a set of sliced buckets SB. Initially, Q
contains only one bucket which includes all tuples and SB
is empty. For each iteration, the algorithm removes a bucket
from Q and splits the bucket into two buckets. If the sliced
table after the split satisfies l-diversity, then the algorithm
puts the two buckets at the end of the queue Q Otherwise,
we cannot split the bucket anymore and the algorithm puts
the bucket into SB. When Q becomes empty, we have
computed the sliced table. The set of sliced buckets is SB.

VI. GENERALIZATION ALGORITHMS

A. The GreedyDP Algorithm
Given the complexity of our problem, a more practical

solution would be a near-optimal greedy algorithm. As
preliminary, we introduce an operator -t called
prune-leaf, which indicates the removal of a leaf topic t
from a profile. Formally, we denote by Gi -t Gi+1 the
process of pruning leaf t from Gi to obtain Gi+1. Obviously,
the optimal profile G0 can be generated with a finite-length
transitive closure of prune-leaf.

The first greedy algorithm GreedyDP works in a bottom-
up manner. Starting from G0, in every ith iteration,
GreedyDP chooses a leaf topic t ε TGi (q) for pruning,
trying to maximize the utility of the output of the current
iteration, namely Gi+1. During the iterations, we also
maintain a best -profile- so-far, which indicates the Gi+1
having the highest discriminating power while satisfying
th �e -risk constraint. The iterative process terminates when
the profile is generalized to a root-topic. The best-profile-
so-far will be the final result (G*) of the algorithm. The
main problem of GreedyDP is that it requires recomputation
of all candidate profiles (together with their discriminating
power and privacy risk) generated from attempts of prune-
leaf on all t ε TGi(q). This causes significant memory
requirements and computational cost.

Manali Wadnerkar / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 4086-4093

www.ijcsit.com 4091

B. The GreedyIL algorithm
 It improves the efficiency of the generalization using
heuristics based on several findings. One important finding
is that any prune-leaf operation reduces the discriminating
power of the profile. In other words, the DP displays
monotonicity by prune-leaf. Three following heuristics
extends this algorithm:

 The iterative process can terminate whenever δ-risk
is satisfied.

 Once a leaf topic t is pruned, only the candidate
operators pruning t’s sibling topics need to be
updated in Q.

 IL(t)=Pr(t | q,G)(IC(t)-IC(par(tG))), case C1

 =dp(t) + dp(shadow)-dp(shadow’), case C2

 where, IC(t)=log-1 Pr(t) (Pr is the probability of

finding topic t)
 & dp is the discriminating power.

Fig. 4 Two cases of prune-leaf on leaf a t

VII. EXPERIMENTAL RESULTS

In order to evaluate the effectiveness of the proposed
GreedyIL algorithm, which consists of the slicing algorithm
and the user profile generating algorithm, and evaluate the
discovered user access patterns, experiments are conducted
on real world data set and make comparisons with the
previous work.

Fig. 5 Steps of the online profiler

The steps performed by the online profiler are displayed
in the fig. 5. Profile is constructed firstly. This profile is the
entire information of a particular user every time he/she
logins. Then the privacy requirements which are given by
the user at the time of registration are customized, the seed
profile G0 is created and then generalized.

Fig. 6 User’s query page

 When user fires any query, instead of going to the

server, the query and the generalized profile are sent to the
online profiler. The data is then matched and if the user is
valid and the risk is minimal the query is sent to the server.
If any third party is trying to attack the user private data,
he/she will be blocked by the proxy whenever the attacker
makes an attack. A message will pop up about the blocking
the IP address of the adversary as shown in fig. 7.

Fig. 7 Attack blocked by the privacy

 The slicing algorithm helps to increase the efficiency

of the search and enhances user’s privacy. Because of this
addition the user profile becomes difficult to understand
and the attacker has a minimal chance to identify the user.
Since the attacker is unable to find or identify the user
profile, he is unable to access the hidden node-set of the
particular user and thus the privacy of the user is now safe.

Manali Wadnerkar / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 4086-4093

www.ijcsit.com 4092

Fig. 8 Slicing on user profiles

VIII. CONCLUSION AND FUTURE WORK

It presented a client-side privacy protection framework
called UPS for personalized web search. UPS could
potentially be adopted by any PWS that captures user
profiles in a hierarchical taxonomy. The framework allowed
users to specify customized privacy requirements via the
hierarchical profiles. In addition, UPS also performed
online generalization on user profiles to protect the personal
privacy without compromising the search quality. We
proposed two greedy algorithms, namely GreedyDP and
GreedyIL, for the online generalization. Personalized search
is a promising way to improve search quality. However,
this approach requires users to grant the server full access to
personal information on Internet, which violates users’
privacy. Hence, a way is suggested of achieving a balance
between users’ privacy and search quality. Users’ data is
collected, summarized, and organized their personal
information into a hierarchical user profile, where general
terms are ranked to higher levels than specific terms.

REFERENCES
[1] Yabo Xu, Benyu Zhang, Zheng Chen, Ke Wang, “Privacy-

Enhancing Personalized Web Search,” WWW 2007, May 8–12,
2007, Banff, Alberta, Canada.

[2] Lidan Shou, He Bai, Ke Chen, and Gang Chen, “Supporting Privacy
Protection in Personalized Web Search,” Proc. IEEE
TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
VOL:26 NO:2 YEAR 2014.

[3] Ashwini Andhalkar, and Pradnya Ingawale, ”Slicing: Privacy
Preserving Data Publishing Technique,” International Journal of
Computer & Organization Trends – Volume 5 Number 2 – February
2014.

[4] Ricardo Baeza-Yates1, Carlos Hurtado1, and Marcelo Mendoza,
“Query Recommendation using Query Logs in Search Engines,”
Proc. Millennium Nucleus, Center for Web Research (P01-029-F),
Mideplan, Chile.

[5] Zhicheng Dou, Ruihua Song, JiRong Wen, “A Largescale
Evaluation and Analysis of Personalized Search Strategies,”
International World Wide Web Conference Committee (IW3C2),
May 8–12, 2007, Banff, Alberta, Canada.

[6] Jaime Teevan, Susan T. Dumais, Eric Horvitz, “Personalizing
Search via Automated Analysis of Interests and Activities,”
SIGIR ’05, August 15–19, 2005, Salvador, Brazil.

[7] Mirco Speretta, Susan Gauch, “Personalizing Search Based on User
Search Histories”, Conference’04, Month 1–2, 2004, Salvador,
Brazil.

[8]] Huanhuan Cao, Daxin Jiang, Jian Pei, Qi He, Zhen Liao, Enhong
Chen, Hang Li, “Context-Aware Query Suggestion by Mining Click-
Through and Session Data,” KDD’08, August 24–27, 2008, Las
Vegas, Nevada, USA.

[9] Kazunari Sugiyama, Kenji Hatano, Masatoshi Yoshikawa,
“Adaptive Web Search Based on User Profile Constructed without
Any Effort from Users,” WWW2004, May 17–22, 2004, New York,
New York, USA.

[10] Sonam Jain, Sandeep Poonia, “A New approach of program slicing:
Mixed S-D (static & dynamic) slicing,” International Journal of
Advanced Research in Computer and Communication Engineering
Vol. 2, Issue 5, May 2013.

AUTHOR BIBLIOGRAPHY
 Ms. Manali Wadnerkar currently pursuing M.E(CSE) in

department of Computer Engineering , Bharati Vidyapeeth College of
Engineering, Navi Mumbai. She has published one paper in the
international journal and her areas of interest are web security, advanced
databases, and web technology

Dr. D.R. Ingle is working as a Professor and Head in department
of Computer Engineering, Bharati Vidyapeeth College of Engineering,
Navi Mumbai. He has more than 40 papers to his credit at national and
international level. He has taught various subjects as Object Oriented
Analysis and design, Advanced Databases, Web Technology, Intelligent
Systems, and Web Engineering etc. at graduate and post-graduate level. He
has guided several projects at graduate and post-graduate level. He is a

member of ACM and the life member of ISTE.

Manali Wadnerkar / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 4086-4093

www.ijcsit.com 4093

