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Abstract— Personalized web search (PWS) has illustrated its 
effectiveness by improving the quality of search services on the 
Internet. But, evidence shows that users’ hesitation to disclose 
their private information during search has become a major 
barrier for PWS. Privacy protection in PWS applications can 
be adopted that model user preferences as hierarchical user 
profiles by studying a PWS framework called UPS that 
adaptively generalizes profiles by queries while keeping in 
mind user-specified privacy requirements. Program slicing 
technique is used for decomposition of a program by analysing 
that particular program data and control flow. 

Keywords— Personalized web search, privacy, dynamic slicing, 
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I. INTRODUCTION 

It has become increasingly difficult for users to find 
information on the World Wide Web that satisfies their 
individual needs since information resources on the WWW 
continue to grow. Under these circumstances, Web search 
engines help users find useful information on the WWW. 
However, when the same query is submitted by different 
users, most search engines return the same results 
regardless of who submits the query. In general, each user 
has different information needs for his/her query. For 
example, for the query “Java,” some users may be 
interested in documents dealing with the programming 
language, “Java,” while other users may want documents 
related to “coffee.” Therefore, Web search results should 
adapt to users with different information needs. The web 
search engine has become an important doorway for people 
for finding useful and necessary information. Nonetheless a 
user might come across failure when these search engines 
return unrelated results that do not meet their requirements. 
This happens due to enormous data, users’ background and 
knowledge and ambiguity of texts. Personalized Web 
Search (PWS) is a search technique which aims at 
providing more efficient results, according to the users’ 
needs. This requires user information to figure out the 
actual intention behind the requested query. 

There are two solutions to PWS, click-log-based 
methods and profile-based-methods. The former is bias to 
clicked URLs or pages in the particular user’s history and 
can work only on repeated queries. In contrast to this, the 
latter improves the search experience with user-interest 

models [1]. These user interest models are generated from 
users’ profiles. PWS has illustrated more effectiveness in 
improving the quality of web data search. For this, implicit 
user data has to be collected which can be collected from 
query history [2], browsing history, bookmarks [1], and 
click-through data [3]. This raises privacy issues due to the 
lack of protection of user’s private data. This may raise 
panic among the users and can also smother the publisher’s 
enthusiasm for offering such services. As more and more 
topics are being discussed on the web and our vocabulary 
remains relatively stable, it is increasingly difficult to let the 
search engine know what we want. Coping with ambiguous 
queries has long been an important part in the research of 
Information Retrieval, but still remains to be a challenging 
task. Personalized search has recently got significant 
attention to address this challenge in the web search 
community, based on the premise that a user’s general 
preference may help the search engine disambiguate the 
true intention of a query. However, studies have shown that 
users are reluctant to provide any explicit input on their 
personal preference. In this paper, study shows how a 
search engine can learn a user’s preference automatically 
based on her past click history and how it can use the user 
preference to personalize search results. 

There are two solutions to PWS, click-log-based 
methods and profile-based-methods. The former is bias to 
clicked URLs or pages in the particular user’s history and 
can work only on repeated queries. In contrast to this, the 
latter improves the search experience with user-interest 
models [1]. These user interest models are generated from 
users’ profiles. PWS has illustrated more effectiveness in 
improving the quality of web data search. For this, implicit 
user data has to be collected which can be collected from 
query history [2], browsing history, bookmarks [1], and 
click-through data [3]. This raises privacy issues due to the 
lack of protection of user’s private data. This may raise 
panic among the users and can also smother the publisher’s 
enthusiasm for offering such services.     For protecting user 
privacy in profile-based PWS, developers have to consider 
two contradicting effects while performing the search 
process. They have to make an attempt to improve the 
search quality with the personalization utility and on the 
other hand they need to hide the privacy contents existing in 
the user profile for keeping the privacy risk under control 
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[1].  People are willing to compromise their private data if 
this will help in an easy access to required information and 
an efficient search quality. A significant amount of gain can 
be obtained by personalizing users’ information at the cost 
of a small information, a generalized profile. . Hence, 
without compromising the search quality if the web user 
privacy can be protected. The previous works showing 
privacy preservation are not optimal. There are following 
concerns with the existing methods which can be explained 
as below: 

 The existing methods do not perform customization of 
privacy requirements. This makes some user privacy 
to be insufficiently protected and some over-protected. 
The sensitive topics are detected using the absolute 
metric called surprisal [1]. The topics which are 
sensitive and the user wants to hide them may not be 
well protected. This increases the risk of losing a 
sensitive data.  

 The existing profile-based PWS are unable to support 
runtime profiling. A user, when searches the web 
engine, his profile is generalized only once. This 
strategy has certain drawbacks since it uses one 
profile for all the queries. A better approach can be to 
make an online decision for whether to personalize 
the query and at runtime what to expose in a user 
profile. 

 Iterative user interactions are needed when creating 
personalized search outcome. Predictive metrics 
unlike, average rank, are required to measure the 
search quality. 

 A good personalization algorithm relies on rich user 
profiles and web corpus. However, as the web corpus is on 
the server, re-ranking on the client side is bandwidth 
intensive because it requires a large number of search 
results transmitted to the client before re-ranking. 
Alternatively, if the amount of information transmitted is 
limited through filtering on the server side, it pins high 
hope on the existence of desired information among filtered 
results, which is not always the case. Therefore, most of 
personalized search services online like Google 
Personalized Search and Yahoo! My Web adopt the second 
approach to tailor results on the server by analysing 
collected personal information, e.g. personal interests, and 
search histories.   

 A key factor for today’s popular search engines is that 
they provide a user-friendly interface. The topics which are 
displayed on the web page related to a particular query are 
in the form of list of keywords entered by the user in the 
search bar, ranked according to their relevance with the 
original query. Ranking has become a central research 
problem for informational retrieval and Web data search, as 
it directly influences the relevance of the search results, the 
quality of a search system and users’ search experience. 
Given a query, the deployed ranking function measures the 
relevance of each document to the query, sorts all the 
relevant documents and presents a list of top-ranked ones to 
the user. Despite of the simple interaction which proved to 
be successful, a list of keywords is not a good descriptor of 
the required information by the users. Users can not always 
formulate an efficient query to these search engines. One 

reason for this is the ambiguous data which is entered by 
the user. Often, users try different queries till get satisfied 
with the appropriate results. If users are familiar with the 
specific terminologies required, effective formulation can 
be achieved. But this may not be the case always. Users 
may have a little knowledge about what they are searching 
or even worse they do not what they are searching at all. An 
example explained in [2], a tourist is searching for summer 
rentals ad in Chile may not know that most of such ads 
appearing on the web are for apartments in Vina del Mar 
which is a popular beach in Chile. But local users are well 
aware of such facts. Hence, the idea is to use these expert 
queries for helping the non-expert users. So, to overcome 
this problem some search engines help the users to specify 
alternative queries related to the original query in their 
search process. Nonetheless, this approach has privacy 
issues on exposing personal information to a public server. 
It usually requires users to grant the server full access to 
their personal and behaviour information on the Internet. 
Without the user’s permission, gleaning such information 
would violate an individual’s privacy. In practice, however, 
privacy is not absolute. There exist already many examples 
where people give up some privacy to gain economic 
benefit. One example is frequent shopper card in grocery 
stores. Consumers trade the benefit of extra saving in the 
grocery stores versus the creation of a detailed profile of 
their shopping behaviour. As another example, consider a 
basketball fan. He may not be comfortable broadcasting a 
weekly work-out schedule, but might not mind revealing an 
interest on basketball if a search engine can help identify 
“Rockets” as an NBA team instead of anything related to 
space exploration. Thus, people may compromise some 
personal information if this yields them some gain in 
service quality or profitability. 

  Paper is organized as section two deals with related 
works, section three deals with system architecture, section 
four deals with User Customizable Privacy Preserving 
Search (UPS), section five deals with slicing algorithm, 
section six deals with Generalization Algorithms, section 
seven deals with experimental results and section eight 
conclude with the results.  

II. RELATED WORKS 

In this section, the related works are overviewed. Focus 
is on the literature of profile-based personalization and 
privacy protection in PWS system.  
A. Profile-based personalization 

There have been several prior attempts to personalize 
Web search. One approach to personalization is to have 
users describe their general interests. For example, Google 
Personal asks users to build a profile of themselves by 
selecting categories of interests. This profile can then be 
used to personalize search results by mapping Web pages to 
the same categories. Many commercial information filtering 
systems use this approach, and it has been explored before 
to personalize Web search results. Personal profiles have 
also been used in the context of the Web search to create a 
personalized version of PageRank [10] for setting the 
query-independent priors on Web pages. A similar 
technique for mapping user queries to categories based on 
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the user’s search history. Information about the user’s intent 
can also be collected at query time by means of techniques 
such as relevance feedback or query refinement. The basic 
idea of these works is to tailor the search results by 
referring to, often implicitly, a user profile that reveals an 
individual information goal. In the remainder of this section, 
previous solutions to PWS can be reviewed the on two 
aspects, namely the representation of profiles, and the 
measure of the effectiveness of personalization.  

Most recent works build profiles in hierarchical structures 
due to their stronger descriptive ability, better scalability, 
and higher access efficiency. The majority of the 
hierarchical representations are constructed with existing 
weighted topic hierarchy/graph, such as ODP, Wikipedia 
and so on. Another work in [5] builds the hierarchical 
profile automatically via term-frequency analysis on the 
user data. In the proposed UPS framework, focus is not on 
the implementation of the user profiles. 

Actually, this framework can potentially adopt any 
hierarchical representation based on a taxonomy of 
knowledge. As for the performance measures of PWS in the 
literature, Normalized Discounted Cumulative Gain (nDCG) 
is a common measure of the effectiveness of an information 
retrieval system. It is based on a human-graded relevance 
scale of item-positions in the result list, and is, therefore, 
known for its high cost in explicit feedback collection. To 
reduce the human involvement in performance measuring, 
researchers also propose other metrics of personalized web 
search that rely on clicking decisions, including Average 
Precision, Rank Scoring and Average Rank [3]. Average 
Precision metric, proposed by Dou et al. [1], to measure the 
effectiveness of the personalization in UPS. Meanwhile, our 
work is distinguished from previous studies as it also 
proposes two predictive metrics, namely personalization 
utility and privacy risk, on a profile instance without 
requesting for user feedback. 

 
B. Privacy Protection in PWS System 

Typical works in the literature of protecting user 
identifications try to solve the privacy problem on different 
levels, including the pseudo-identity, the group identity, no 
identity, and no personal information. Solution to the first 
level is proved to fragile. The third and fourth levels are 
impractical due to high cost in communication and 
cryptography. Therefore, the existing efforts focus on the 
second level. Both [8] and [9] provide online anonymity on 
user profiles by generating a group profile of k users. Using 
this approach, the linkage between the query and a single 
user is broken. The useless user profile (UUP) protocol is 
proposed to shuffle queries among a group of users who 
issue them. As a result any entity cannot profile a certain 
individual. These works assume the existence of a 
trustworthy third-party anonymizer, which is not readily 
available over the Internet at large.  

A more important property that distinguishes our work 
from [10] is that we provide personalized privacy protection 
in PWS. A person can specify the degree of privacy 
protection for her/his sensitive values by specifying 
“guarding nodes” in the taxonomy of the sensitive attribute. 
Motivate by this, we allow users to customize privacy needs 

in their hierarchical user profiles. Aside from the above 
works, a couple of recent studies have raised an interesting 
question that concerns the privacy protection in PWS. The 
previous works have found that personalization may have 
different effects on different queries. Queries with smaller 
click-entropies, namely distinct queries, are expected to 
benefit more from personalization, while those with larger 
values (ambiguous ones) are not. Moreover, the latter may 
even cause privacy disclosure. Therefore, the need for 
personalization becomes questionable for such queries. 
While these works are motivated in questioning whether to 
personalize or not to, they assume the availability of 
massive user query logs (on the server side) and user 
feedback. In our UPS framework, we differentiate distinct 
queries from ambiguous ones based on a client-side 
solution using the predictive query utility metric. 

 
C. Slicing 

Two popular Anonymization techniques are 
generalization and bucketization. Generalization, replaces a 
value with a “less-specific but semantically consistent” 
value. The main problems with generalization are:  

 It fails on high-dimensional data due to the curse of 
dimensionality. 

 It causes too much information loss due to the 
uniform-distribution assumption. 

 Bucketization first partitions tuples in the table into 
buckets and then separates the quasi identifiers with the 
sensitive attribute by randomly permuting the sensitive 
attribute values in each bucket. The anonymized data 
consist of a set of buckets with permuted sensitive attribute 
values. In particular, bucketization has been used for 
anonymizing high-dimensional data. However, their 
approach assumes a clear separation between Qis and SAs. 
In addition, because the exact values of all QIs are released, 
membership information is disclosed. The key idea of 
slicing is to preserve correlations between highly correlated 
attributes and to break correlations between uncorrelated 
attributes thus achieving both better utility and better 
privacy. Third, existing data analysis (e.g. query answering) 
methods can be easily used on the sliced data. 

III. SYSTEM ARCHITECTURE 

A. Online profile 
The proposed idea also suggests that the queries issued 

are recommended that are related to the input query and 
also search for different issues. This redirects the search 
process to related information of interest to the users 
searching previously and also keeping track of the related 
queries issued by other users. The key component for 
privacy protection is an online profiler implemented as a 
search proxy that runs on client side. This proxy maintains 
both the complete user profile in a hierarchical structure 
with semantics, and the user-specified privacy requirements 
i.e. sensitive nodes. It works in two phases, namely the 
offline phase and the online phase. In the offline phase, 
hierarchical profile is constructed and then customized with 
the user-specified privacy requirements [1]. The online 
phase can be conducted as follows: 
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 When query is generated the proxy generates a runtime 
user profile. This process is guided by considering two 
conflicting metrics, personalization utility and privacy 
risk. 

 Then, the query and the generalized profile are sent 
together to the server. 

 These results are then personalized with the profile and 
delivered back to the query proxy. 

 Finally, the proxy sends back the results to the client. 
 

 
          

Fig. 1 Block diagram of UPS. 
 

      UPS differs from the conventional PWS since it provides 
runtime profiling which optimizes personalization utility, 
which performs customization on the sensitive data defined 
by the users, and does not require iterative user interaction.  

Again, for efficient browsing, it is required to find the 
ranks of the related queries and cluster them. Queries along 
with the text of their clicked URLs extracted from the web 
log are clustered.  This is done on the basis of two notions: 
 Similarity of the query. The similarity of the query to 

the input query.  
 Support of the query. This is a measure of how relevant 

is the query in the cluster. It is measured with the 
support of the query as the fraction of the documents 
returned by the query that captured the attention of 
users (clicked documents). It is estimated from the 
query log as well.  

 The quality of service can be improved when the 
location of the users are closer [4]. So, if the users share 
more data with each other the services provided by the web 
will be accurate. The studies show that the user is biased 
when it comes to searching information on the web. It can 
be trusts-biased or quality-biased [3]. This shows that clicks 
should be interpreted relative to the order of abstracts and 
presentation. Some attempts are made to use implicit 
feedback [4]. The reading time is indicative of interest 
while reading new stories. The reading time as well as 
number of times the user scrolls page can predict the 
relevance in browsing web. But it is generally considered 
that reading time varies between subjects and tasks, which 
makes it difficult to interpret. This difficulty can be 
resolved by the concept of eye-tracking. A general user 
approaches the results from top to bottom. It appears that 
users scan the viewable results before heading to scrolling. 
It gives evidences about users’ decision making and 
indicates that users’ clicking decisions are influenced by 
relevant results. 

B.  Session time-out 
An experiment can be conducted where the users are 

observed with their clicked URL and session lengths and 
then can be re-enacted. For further help, clicks can be 
observed and assessment of the user’s objectives can be 
done to label each session. Each query and clicked URL are 
assigned with ID number. A strength of this approach is 
that data is recorded without having an intervention and 
additionally we can observe large amount of users. There is 
a chance that the observer is biased to the user’s goals but 
preliminary results show that the results achieved are 
reliable. The utility of adopting a hierarchical model for the 
grouping of user queries will allow us to more easily model 
what type of task the user may be doing when querying. 

 
C. Attack Model 

The user profile should be protected from adversaries 
which try to hamper the privacy and sensitive nodes defined 
by the user by a typical attack, namely eavesdropping. As 
shown in the Fig. 2 the eavesdropper intercepts successfully 
the communication happening between the server and the 
user by a measure, such as man-in-the-middle attack, 
invading the server. Accordingly, whenever the user issues 
any query q, the entire copy of q along with the runtime 
profile of the user will be seized the attacker. 

  
Fig. 2 Attack Model. 

 
The attacker will then try to recover the hidden segments 

defined as private by the user. Now, the adversary is 
considered to satisfy the following assumptions: 

Knowledge Bound. The background knowledge of the 
adversary is limited to the entire information available on 
the web. Both the original user profile and the privacy are 
defined within this information. 

Session Bound. Previously captured information is not 
available for tracing the same victim. The eavesdropping 
will be started and ended within a single session. 

These assumptions are strong but are reasonable in 
practice. This is considered since majority of attacks across 
the web happen by some automatic programs that sends 
advertisements (spam) to a wide range of users. An 
approach can be made to keep this privacy risk under 
control.  
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D. Generalizing user profile 
This technique can be considered during the offline 

phase processing without involving any of the user’s 
queries. But however it is impractical to perform this in 
offline phase because: 
 This output from the offline phase may contain many 

topics that are completely irrelevant to the particular 
query. This can be solve if profile is generalized in the 
online phase.  

 It avoids unnecessary privacy disclosure to the 
adversaries and also avoids noisy topics which are 
irrelevant to the query.  

 It is very important to monitor the personalization 
factor during generalizing. But overgeneralization may 
cause ambiguity. 

There are four phases in [1] which are used in 
generalization of the user profile. They can be explained in 
the following manner: 
 Offline profile construction: This is the first step of the 

offline processing wherein the original user profile is 
built in a topic hierarchy which reveals the interest of 
the user.  

 Offline privacy requirement customization: This phase 
requests the user to specify sensitive nodes which the 
user considers to remain hidden from the world. When 
any query q is issued, this customized user profile goes 
through the online phases. 

 Online query topic mapping: There are two purposes 
for a query q, namely to compute a profile, seed, so that 
all the topics will be relevant to the query q. and to 
obtain the preference values i.e. values which are 
preferred to be present in the relevant topics of the 
query. 

 Online profile generalization: This process generalizes 
the seed profile which relies on the privacy 
requirements of the user. 

 
E.  Online decision 

 When the profile is sent to the server the decision is 
made online. Here the user can decide whether the profile 
should be personalized or not. This depends on the number 
of distinct or similar queries. The similar queries are 
clustered together so that whenever the search is made the 
similar queries can be found in one place. This improves 
and enhances the search quality of the search engine.  

 The profile-based personalization contributes a little and 
even reduces the quality of search when there is a large 
amount of distinct queries. This may expose the profile to 
the server and will risk the privacy of the user. There is a 
solution to this problem. The decision to personalize the 
users’ profile or not can be made in the online phase. The 
idea behind this phase it very simple, if a query issued is a 
distinct query during generalization the complete runtime 
profiling will then be aborted. Then the query will be sent 
to the server without any user profile. This enhances the 
stability of the quality of the search and also avoids the 
unnecessary exposure of the users’ profile.  

 

IV.  USER CUSTOMIZABLE PRIVACY PRESERVING SEARCH 

(UPS) 

  Personalized web search is a promising way to improve 
search quality by customizing search results for people with 
individual information goals. However, users are 
uncomfortable with exposing private preference 
information to search engines. On the other hand, privacy is 
not absolute, and often can be compromised if there is a 
gain in service or profitability to the user. Thus, a balance 
must be struck between search quality and privacy 
protection. A significant improvement on search quality can 
be achieved by only sharing some higher-level user profile 
information, which is potentially less sensitive than detailed 
personal information. Yet, there was a requirement of 
balance between the privacy protection and search quality 
because the information displayed by the web was not 
particularly relevant. 

These problems can be overcome by giving a dynamic or 
runtime approach to building the user profile. This opts for 
efficient browsing and searching with data protection. For 
this a framework can be implemented called UPS. 
Personalized web search (PWS) has demonstrated its 
effectiveness in improving the quality of various search 
services on the Internet but evidences show that users’ 
reluctance to disclose their private information during 
search has become a major barrier for the wide proliferation 
of PWS. UPS that can adaptively generalize profiles by 
queries while respecting user specified privacy 
requirements. The runtime generalization aims at striking a 
balance between two predictive metrics that evaluate the 
utility of personalization and the privacy risk of exposing 
the generalized profile. For this, there are two greedy 
algorithms, namely GreedyDP and GreedyIL, for runtime 
generalization. Also, provision is made for an online 
prediction mechanism for deciding whether personalizing a 
query is beneficial. 

 
Fig. 3 System architecture of UPS 

 
  These algorithms work inside a web browser search 

plug-in to provide contextual search on the client-side, 
which would greatly benefit people’s daily search. Also, 
balance can be achieved if web search are personalized by 
considering only exposing those information related to a 
specific query which can be done using these algorithms.  

 
 
 

Manali Wadnerkar / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 4086-4093

www.ijcsit.com 4090



There are two metrics that are used to solve the 
generalization problem. They can be illustrated as: 

 Metric of utility: The purpose of the utility metric is to 
predict the search quality (in revealing the user’s 
intention) of the query q on a generalized profile G. 
The reason for not measuring the search quality 
directly is because search quality depends largely on 
the implementation of PWS search engine, which is 
hard to predict. In addition, it is too expensive to 
solicit user feedback on search results. Given a 
hierarchical profile G and a query q, we can 
intuitively expect more discriminating power when 
more specific topics are observed, the distribution is 
more concentrated on a few topics, and the topics are 
more similar to each other. 

 Metric of Privacy: The privacy risk when exposing G 
is defined as the total sensitivity contained in it, given 
in normalized form. In the worst case, the original 
profile is exposed, and the risk of exposing all 
sensitive nodes reaches its maximum, namely 1. 
However, if a sensitive node is pruned and its ancestor 
nodes are retained during the generalization, the risk 
of exposing the ancestors should be evaluated. This 
can be done using the cost layer computed during 
Offline-2. However, in some cases, the cost of a non-
leaf node might even be greater than the total risk 
aggregated from its children.    

UPS consists of non-trusty search engine server and a 
number of clients. Each client (user) accessing the search 
service trusts no one but himself/ herself. The key 
component for privacy protection is an online profiler 
implemented as a search proxy running on the client 
machine itself. The proxy maintains both the complete user 
profile, in a hierarchy of nodes with semantics, and the 
user-specified (customized) privacy requirements 
represented as a set of sensitive-nodes. The framework 
works in two phases, namely the offline and online phase, 
for each user. 

V. SLICING ALGORITHM 

Many algorithms like bucketization, generalization have 
tried to preserve privacy however they exhibit attribute 
disclosure. So to overcome this problem an algorithm called 
slicing is used. This algorithm consists of three phases: 
attribute partitioning, column generalization, and tuple 
partitioning. 
A. Attribute Partitioning 

This algorithm partitions attributes so that highly 
correlated attributes are in the same column. This is good 
for both utility and privacy. In terms of data utility, 
grouping highly correlated attributes preserves the 
correlations among those attributes. In terms of privacy, the 
association of uncorrelated attributes presents higher 
identification risks than the association of highly correlated 
attributes because the associations of uncorrelated attribute 
values is much less frequent and thus more identifiable. 

 
 
 
 

B. Column Generalization 
Although column generalization is not a required phase, 

it can be useful in several aspects. First, column 
generalization may be required for identity/membership 
disclosure protection. If a column value is unique in a 
column (i.e., the column value appears only once in the 
column), a tuple with this unique column value can only 
have one matching bucket. This is not good for privacy 
protection, as in the case of generalization/bucketization 
where each tuple can belong to only one equivalence-
class/bucket. The main problem is that this unique column 
value can be identifying. In this case, it would be useful to 
apply column generalization to ensure that each column 
value appears with at least some frequency. Second, when 
column generalization is applied, to achieve the same level 
of privacy against attribute disclosure, bucket sizes can be 
smaller. While column generalization may result in 
information loss, smaller bucket-sizes allow better data 
utility. 
Therefore, there is a trade-off between column 
generalization and tuple partitioning.  
 
C. Tuple Partitioning 

The algorithm maintains two data structures: 1) a queue 
of buckets Q and 2) a set of sliced buckets SB. Initially, Q 
contains only one bucket which includes all tuples and SB 
is empty. For each iteration, the algorithm removes a bucket 
from Q and splits the bucket into two buckets. If the sliced 
table after the split satisfies l-diversity, then the algorithm 
puts the two buckets at the end of the queue Q Otherwise, 
we cannot split the bucket anymore and the algorithm puts 
the bucket into SB. When Q becomes empty, we have 
computed the sliced table. The set of sliced buckets is SB. 

VI.  GENERALIZATION ALGORITHMS 

A. The GreedyDP Algorithm 
Given the complexity of our problem, a more practical 

solution would be a near-optimal greedy algorithm. As 
preliminary, we introduce an operator      -t       called 
prune-leaf, which indicates the removal of a leaf topic t 
from a profile. Formally, we denote by Gi   -t   Gi+1 the 
process of pruning leaf t from Gi to obtain Gi+1. Obviously, 
the optimal profile G0 can be generated with a finite-length 
transitive closure of prune-leaf. 

The first greedy algorithm GreedyDP works in a bottom-
up manner. Starting from G0, in every ith iteration, 
GreedyDP chooses a leaf topic t ε TGi (q) for pruning, 
trying to maximize the utility of the output of the current 
iteration, namely Gi+1. During the iterations, we also 
maintain a best -profile- so-far, which indicates the Gi+1 
having the highest discriminating power while satisfying 
th �e -risk constraint. The iterative process terminates when 
the profile is generalized to a root-topic. The best-profile-
so-far will be the final result (G*) of the algorithm. The 
main problem of GreedyDP is that it requires recomputation 
of all candidate profiles (together with their discriminating 
power and privacy risk) generated from attempts of prune-
leaf on all t ε TGi(q). This causes significant memory 
requirements and computational cost.  
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B. The GreedyIL algorithm  
    It improves the efficiency of the generalization using 
heuristics based on several findings. One important finding 
is that any prune-leaf operation reduces the discriminating 
power of the profile. In other words, the DP displays 
monotonicity by prune-leaf. Three following heuristics 
extends this algorithm: 

 The iterative process can terminate whenever δ-risk 
is satisfied. 

 Once a leaf topic t is pruned, only the candidate 
operators pruning t’s sibling topics need to be 
updated in Q. 

 
 IL(t)=Pr(t | q,G)(IC(t)-IC(par(tG))),          case C1                                   

              =dp(t) +  dp(shadow)-dp(shadow’),   case C2      
 
            where, IC(t)=log-1 Pr(t)  (Pr is the probability of 

finding topic t) 
                   &  dp is the discriminating power. 
 

 
 

Fig. 4 Two cases of prune-leaf on leaf a t 

VII. EXPERIMENTAL RESULTS 

In order to evaluate the effectiveness of the proposed 
GreedyIL algorithm, which consists of the slicing algorithm 
and the user profile generating algorithm, and evaluate the 
discovered user access patterns, experiments are conducted 
on real world data set and make comparisons with the 
previous work. 

 

 
Fig. 5 Steps of the online profiler 

 

The steps performed by the online profiler are displayed 
in the fig. 5. Profile is constructed firstly. This profile is the 
entire information of a particular user every time he/she 
logins. Then the privacy requirements which are given by 
the user at the time of registration are customized, the seed 
profile G0 is created and then generalized.  

 
Fig. 6 User’s query page 

 
    When user fires any query, instead of going to the 

server, the query and the generalized profile are sent to the 
online profiler. The data is then matched and if the user is 
valid and the risk is minimal the query is sent to the server. 
If any third party is trying to attack the user private data, 
he/she will be blocked by the proxy whenever the attacker 
makes an attack. A message will pop up about the blocking 
the IP address of the adversary as shown in fig. 7. 

 

 
 

 
Fig. 7 Attack blocked by the privacy 

 
   The slicing algorithm helps to increase the efficiency 

of the search and enhances user’s privacy. Because of this 
addition the user profile becomes difficult to understand 
and the attacker has a minimal chance to identify the user. 
Since the attacker is unable to find or identify the user 
profile, he is unable to access the hidden node-set of the 
particular user and thus the privacy of the user is now safe. 
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Fig. 8 Slicing on user profiles 

VIII. CONCLUSION AND FUTURE WORK

It presented a client-side privacy protection framework 
called UPS for personalized web search. UPS could 
potentially be adopted by any PWS that captures user 
profiles in a hierarchical taxonomy. The framework allowed 
users to specify customized privacy requirements via the 
hierarchical profiles. In addition, UPS also performed 
online generalization on user profiles to protect the personal 
privacy without compromising the search quality. We 
proposed two greedy algorithms, namely GreedyDP and 
GreedyIL, for the online generalization. Personalized search 
is a promising way to improve search quality. However, 
this approach requires users to grant the server full access to 
personal information on Internet, which violates users’ 
privacy. Hence, a way is suggested of achieving a balance 
between users’ privacy and search quality. Users’ data is 
collected, summarized, and organized their personal 
information into a hierarchical user profile, where general 
terms are ranked to higher levels than specific terms. 
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